1-Transformer_models-9-End-of-chapter_quiz
中英文对照学习,效果更佳!
原课程链接:https://huggingface.co/course/chapter1/10?fw=pt
End-of-chapter quiz
章末测验
问一个问题
This chapter covered a lot of ground! Don’t worry if you didn’t grasp all the details; the next chapters will help you understand how things work under the hood.
这一章涵盖了很多领域!如果您没有掌握所有细节,请不要担心;下一章将帮助您了解事情是如何在幕后运行的。
First, though, let’s test what you learned in this chapter!
不过,首先让我们测试一下您在本章中学到了什么!
- Explore the Hub and look for the
roberta-large-mnlicheckpoint. What task does it perform?
Summarization
探索Hub,寻找`roberta-Large-mnli‘检查点。它执行什么任务?摘要
Text classification
文本分类
Text generation
文本生成
- What will the following code return?
1 | |
It will return classification scores for this sentence, with labels “positive” or “negative”.
下面的代码将返回什么?它将返回该句子的分类分数,标签为“积极”或“消极”。
It will return a generated text completing this sentence.
它将返回完成此句子的生成文本。
It will return the words representing persons, organizations or locations.
它将返回代表个人、组织或位置的单词。
- What should replace … in this code sample?
1 | |
This
什么应该取代…在这个代码样例中?这一直在等着您。
This [MASK] has been waiting for you.
这个[面具]一直在等你。
This man has been waiting for you.
这个人一直在等你。
- Why will this code fail?
1 | |
This pipeline requires that labels be given to classify this text.
为什么这个代码会失败?这个管道需要给出标签来对这个文本进行分类。
This pipeline requires several sentences, not just one.
这条管道需要几句话,而不是一句话。
The 🤗 Transformers library is broken, as usual.
像往常一样,🤗Transformer的库被破坏了。
This pipeline requires longer inputs; this one is too short.
这条管道需要更长的输入;这条管道太短了。
- What does “transfer learning” mean?
Transferring the knowledge of a pretrained model to a new model by training it on the same dataset.
转移学习是什么意思?通过在相同的数据集上训练,将预先训练好的模型的知识转移到新模型上。
Transferring the knowledge of a pretrained model to a new model by initializing the second model with the first model’s weights.
通过用第一模型的权重来初始化第二模型,将预先训练的模型的知识转移到新模型。
Transferring the knowledge of a pretrained model to a new model by building the second model with the same architecture as the first model.
通过构建具有与第一模型相同的体系结构的第二模型,将预先训练的模型的知识转移到新模型。
- True or false? A language model usually does not need labels for its pretraining.
True
对还是错?语言模型通常不需要标签来进行预训练。
False
错误
- Select the sentence that best describes the terms “model”, “architecture”, and “weights”.
If a model is a building, its architecture is the blueprint and the weights are the people living inside.
选择最能描述“模型”、“建筑”和“重量”这三个术语的句子。如果一个模型是一座建筑,它的建筑就是蓝图,而重量就是住在里面的人。
An architecture is a map to build a model and its weights are the cities represented on the map.
建筑是一张构建模型的地图,它的权重是地图上表示的城市。
An architecture is a succession of mathematical functions to build a model and its weights are those functions parameters.
体系结构是一系列用于构建模型的数学函数,其权重是这些函数参数。
您会使用以下哪种类型的模型来完成生成文本的提示?编码器模型
- Which of these types of models would you use for completing prompts with generated text?
An encoder model
一种解码器模型
A decoder model
一种序列到序列模型
A sequence-to-sequence model
您会使用哪种类型的模型来汇总文本?编码器模型
- Which of those types of models would you use for summarizing texts?
An encoder model
一种解码器模型
A decoder model
一种序列到序列模型
A sequence-to-sequence model
您会使用哪种类型的模型来根据特定标签对文本输入进行分类?编码器模型
- Which of these types of models would you use for classifying text inputs according to certain labels?
An encoder model
一种解码器模型
A decoder model
一种序列到序列模型
A sequence-to-sequence model
在一个模型中观察到的偏差可能有什么来源?该模型是预先训练好的模型的微调版本,它从这个模型中获取它的偏差。
- What possible source can the bias observed in a model have?
The model is a fine-tuned version of a pretrained model and it picked up its bias from it.
对该模型进行训练的数据是有偏见的。
The data the model was trained on is biased.
该模型优化的指标是有偏见的。
The metric the model was optimizing for is biased.
