1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
import argparse import os import random import time from distutils.util import strtobool
import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.distributions.categorical import Categorical from torch.utils.tensorboard import SummaryWriter
from huggingface_hub import HfApi, upload_folder from huggingface_hub.repocard import metadata_eval_result, metadata_save
from pathlib import Path import datetime import tempfile import json import shutil import imageio
from wasabi import Printer
msg = Printer()
def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), help="the name of this experiment") parser.add_argument("--seed", type=int, default=1, help="seed of the experiment") parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, `torch.backends.cudnn.deterministic=False`") parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="if toggled, cuda will be enabled by default") parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="if toggled, this experiment will be tracked with Weights and Biases") parser.add_argument("--wandb-project-name", type=str, default="cleanRL", help="the wandb's project name") parser.add_argument("--wandb-entity", type=str, default=None, help="the entity (team) of wandb's project") parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, help="weather to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--env-id", type=str, default="CartPole-v1", help="the id of the environment") parser.add_argument("--total-timesteps", type=int, default=50000, help="total timesteps of the experiments") parser.add_argument("--learning-rate", type=float, default=2.5e-4, help="the learning rate of the optimizer") parser.add_argument("--num-envs", type=int, default=4, help="the number of parallel game environments") parser.add_argument("--num-steps", type=int, default=128, help="the number of steps to run in each environment per policy rollout") parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggle learning rate annealing for policy and value networks") parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Use GAE for advantage computation") parser.add_argument("--gamma", type=float, default=0.99, help="the discount factor gamma") parser.add_argument("--gae-lambda", type=float, default=0.95, help="the lambda for the general advantage estimation") parser.add_argument("--num-minibatches", type=int, default=4, help="the number of mini-batches") parser.add_argument("--update-epochs", type=int, default=4, help="the K epochs to update the policy") parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggles advantages normalization") parser.add_argument("--clip-coef", type=float, default=0.2, help="the surrogate clipping coefficient") parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, help="Toggles whether or not to use a clipped loss for the value function, as per the paper.") parser.add_argument("--ent-coef", type=float, default=0.01, help="coefficient of the entropy") parser.add_argument("--vf-coef", type=float, default=0.5, help="coefficient of the value function") parser.add_argument("--max-grad-norm", type=float, default=0.5, help="the maximum norm for the gradient clipping") parser.add_argument("--target-kl", type=float, default=None, help="the target KL divergence threshold")
parser.add_argument("--repo-id", type=str, default="ThomasSimonini/ppo-CartPole-v1", help="id of the model repository from the Hugging Face Hub {username/repo_name}")
args = parser.parse_args() args.batch_size = int(args.num_envs * args.num_steps) args.minibatch_size = int(args.batch_size // args.num_minibatches) return args
def package_to_hub( repo_id, model, hyperparameters, eval_env, video_fps=30, commit_message="Push agent to the Hub", token=None, logs=None, ): """ Evaluate, Generate a video and Upload a model to Hugging Face Hub. This method does the complete pipeline: - It evaluates the model - It generates the model card - It generates a replay video of the agent - It pushes everything to the hub :param repo_id: id of the model repository from the Hugging Face Hub :param model: trained model :param eval_env: environment used to evaluate the agent :param fps: number of fps for rendering the video :param commit_message: commit message :param logs: directory on local machine of tensorboard logs you'd like to upload """ msg.info( "This function will save, evaluate, generate a video of your agent, " "create a model card and push everything to the hub. " "It might take up to 1min. \n " "This is a work in progress: if you encounter a bug, please open an issue." ) repo_url = HfApi().create_repo( repo_id=repo_id, token=token, private=False, exist_ok=True, )
with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = Path(tmpdirname)
torch.save(model.state_dict(), tmpdirname / "model.pt")
mean_reward, std_reward = _evaluate_agent(eval_env, 10, model)
eval_datetime = datetime.datetime.now() eval_form_datetime = eval_datetime.isoformat()
evaluate_data = { "env_id": hyperparameters.env_id, "mean_reward": mean_reward, "std_reward": std_reward, "n_evaluation_episodes": 10, "eval_datetime": eval_form_datetime, }
with open(tmpdirname / "results.json", "w") as outfile: json.dump(evaluate_data, outfile)
video_path = tmpdirname / "replay.mp4" record_video(eval_env, model, video_path, video_fps)
generated_model_card, metadata = _generate_model_card( "PPO", hyperparameters.env_id, mean_reward, std_reward, hyperparameters ) _save_model_card(tmpdirname, generated_model_card, metadata)
if logs: _add_logdir(tmpdirname, Path(logs))
msg.info(f"Pushing repo {repo_id} to the Hugging Face Hub")
repo_url = upload_folder( repo_id=repo_id, folder_path=tmpdirname, path_in_repo="", commit_message=commit_message, token=token, )
msg.info(f"Your model is pushed to the Hub. You can view your model here: {repo_url}") return repo_url
def _evaluate_agent(env, n_eval_episodes, policy): """ Evaluate the agent for ``n_eval_episodes`` episodes and returns average reward and std of reward. :param env: The evaluation environment :param n_eval_episodes: Number of episode to evaluate the agent :param policy: The agent """ episode_rewards = [] for episode in range(n_eval_episodes): state = env.reset() step = 0 done = False total_rewards_ep = 0
while done is False: state = torch.Tensor(state).to(device) action, _, _, _ = policy.get_action_and_value(state) new_state, reward, done, info = env.step(action.cpu().numpy()) total_rewards_ep += reward if done: break state = new_state episode_rewards.append(total_rewards_ep) mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards)
return mean_reward, std_reward
def record_video(env, policy, out_directory, fps=30): images = [] done = False state = env.reset() img = env.render(mode="rgb_array") images.append(img) while not done: state = torch.Tensor(state).to(device) action, _, _, _ = policy.get_action_and_value(state) state, reward, done, info = env.step( action.cpu().numpy() ) img = env.render(mode="rgb_array") images.append(img) imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)], fps=fps)
def _generate_model_card(model_name, env_id, mean_reward, std_reward, hyperparameters): """ Generate the model card for the Hub :param model_name: name of the model :env_id: name of the environment :mean_reward: mean reward of the agent :std_reward: standard deviation of the mean reward of the agent :hyperparameters: training arguments """ metadata = generate_metadata(model_name, env_id, mean_reward, std_reward)
converted_dict = vars(hyperparameters) converted_str = str(converted_dict) converted_str = converted_str.split(", ") converted_str = "\n".join(converted_str)
model_card = f""" # PPO Agent Playing {env_id}
This is a trained model of a PPO agent playing {env_id}.
# Hyperparameters """ return model_card, metadata
def generate_metadata(model_name, env_id, mean_reward, std_reward): """ Define the tags for the model card :param model_name: name of the model :param env_id: name of the environment :mean_reward: mean reward of the agent :std_reward: standard deviation of the mean reward of the agent """ metadata = {} metadata["tags"] = [ env_id, "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", ]
eval = metadata_eval_result( model_pretty_name=model_name, task_pretty_name="reinforcement-learning", task_id="reinforcement-learning", metrics_pretty_name="mean_reward", metrics_id="mean_reward", metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}", dataset_pretty_name=env_id, dataset_id=env_id, )
metadata = {**metadata, **eval}
return metadata
def _save_model_card(local_path, generated_model_card, metadata): """Saves a model card for the repository. :param local_path: repository directory :param generated_model_card: model card generated by _generate_model_card() :param metadata: metadata """ readme_path = local_path / "README.md" readme = "" if readme_path.exists(): with readme_path.open("r", encoding="utf8") as f: readme = f.read() else: readme = generated_model_card
with readme_path.open("w", encoding="utf-8") as f: f.write(readme)
metadata_save(readme_path, metadata)
def _add_logdir(local_path: Path, logdir: Path): """Adds a logdir to the repository. :param local_path: repository directory :param logdir: logdir directory """ if logdir.exists() and logdir.is_dir(): repo_logdir = local_path / "logs"
if repo_logdir.exists(): shutil.rmtree(repo_logdir)
shutil.copytree(logdir, repo_logdir)
def make_env(env_id, seed, idx, capture_video, run_name): def thunk(): env = gym.make(env_id) env = gym.wrappers.RecordEpisodeStatistics(env) if capture_video: if idx == 0: env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") env.seed(seed) env.action_space.seed(seed) env.observation_space.seed(seed) return env
return thunk
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) return layer
class Agent(nn.Module): def __init__(self, envs): super().__init__() self.critic = nn.Sequential( layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), nn.Tanh(), layer_init(nn.Linear(64, 64)), nn.Tanh(), layer_init(nn.Linear(64, 1), std=1.0), ) self.actor = nn.Sequential( layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), nn.Tanh(), layer_init(nn.Linear(64, 64)), nn.Tanh(), layer_init(nn.Linear(64, envs.single_action_space.n), std=0.01), )
def get_value(self, x): return self.critic(x)
def get_action_and_value(self, x, action=None): logits = self.actor(x) probs = Categorical(logits=logits) if action is None: action = probs.sample() return action, probs.log_prob(action), probs.entropy(), self.critic(x)
if __name__ == "__main__": args = parse_args() run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" if args.track: import wandb
wandb.init( project=args.wandb_project_name, entity=args.wandb_entity, sync_tensorboard=True, config=vars(args), name=run_name, monitor_gym=True, save_code=True, ) writer = SummaryWriter(f"runs/{run_name}") writer.add_text( "hyperparameters", "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), )
random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
envs = gym.vector.SyncVectorEnv( [make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)] ) assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
agent = Agent(envs).to(device) optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) dones = torch.zeros((args.num_steps, args.num_envs)).to(device) values = torch.zeros((args.num_steps, args.num_envs)).to(device)
global_step = 0 start_time = time.time() next_obs = torch.Tensor(envs.reset()).to(device) next_done = torch.zeros(args.num_envs).to(device) num_updates = args.total_timesteps // args.batch_size
for update in range(1, num_updates + 1): if args.anneal_lr: frac = 1.0 - (update - 1.0) / num_updates lrnow = frac * args.learning_rate optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps): global_step += 1 * args.num_envs obs[step] = next_obs dones[step] = next_done
with torch.no_grad(): action, logprob, _, value = agent.get_action_and_value(next_obs) values[step] = value.flatten() actions[step] = action logprobs[step] = logprob
next_obs, reward, done, info = envs.step(action.cpu().numpy()) rewards[step] = torch.tensor(reward).to(device).view(-1) next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
for item in info: if "episode" in item.keys(): print(f"global_step={global_step}, episodic_return={item['episode']['r']}") writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step) writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step) break
with torch.no_grad(): next_value = agent.get_value(next_obs).reshape(1, -1) if args.gae: advantages = torch.zeros_like(rewards).to(device) lastgaelam = 0 for t in reversed(range(args.num_steps)): if t == args.num_steps - 1: nextnonterminal = 1.0 - next_done nextvalues = next_value else: nextnonterminal = 1.0 - dones[t + 1] nextvalues = values[t + 1] delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam returns = advantages + values else: returns = torch.zeros_like(rewards).to(device) for t in reversed(range(args.num_steps)): if t == args.num_steps - 1: nextnonterminal = 1.0 - next_done next_return = next_value else: nextnonterminal = 1.0 - dones[t + 1] next_return = returns[t + 1] returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return advantages = returns - values
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) b_logprobs = logprobs.reshape(-1) b_actions = actions.reshape((-1,) + envs.single_action_space.shape) b_advantages = advantages.reshape(-1) b_returns = returns.reshape(-1) b_values = values.reshape(-1)
b_inds = np.arange(args.batch_size) clipfracs = [] for epoch in range(args.update_epochs): np.random.shuffle(b_inds) for start in range(0, args.batch_size, args.minibatch_size): end = start + args.minibatch_size mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value( b_obs[mb_inds], b_actions.long()[mb_inds] ) logratio = newlogprob - b_logprobs[mb_inds] ratio = logratio.exp()
with torch.no_grad(): old_approx_kl = (-logratio).mean() approx_kl = ((ratio - 1) - logratio).mean() clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds] if args.norm_adv: mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
pg_loss1 = -mb_advantages * ratio pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) pg_loss = torch.max(pg_loss1, pg_loss2).mean()
newvalue = newvalue.view(-1) if args.clip_vloss: v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 v_clipped = b_values[mb_inds] + torch.clamp( newvalue - b_values[mb_inds], -args.clip_coef, args.clip_coef, ) v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) v_loss = 0.5 * v_loss_max.mean() else: v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean() loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) optimizer.step()
if args.target_kl is not None: if approx_kl > args.target_kl: break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() var_y = np.var(y_true) explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) writer.add_scalar("losses/value_loss", v_loss.item(), global_step) writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) writer.add_scalar("losses/explained_variance", explained_var, global_step) print("SPS:", int(global_step / (time.time() - start_time))) writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
envs.close() writer.close()
eval_env = gym.make(args.env_id)
package_to_hub( repo_id=args.repo_id, model=agent, hyperparameters=args, eval_env=gym.make(args.env_id), logs=f"runs/{run_name}", )
|